Global Asymptotic Behavior of a Chemostat Model with Two Perfectly Complementary Resources and Distributed Delay

نویسندگان

  • Bingtuan Li
  • Gail S. K. Wolkowicz
  • Yang Kuang
چکیده

A model of the chemostat involving two species of microorganisms competing for two perfectly complementary, growth-limiting nutrients is considered. The model incorporates distributed time delay in the form of integral differential equations in order to describe the time involved in converting nutrient to biomass. The delays are included in the nutrient and species concentrations simultaneously. A general class of monotone increasing functions is used to describe nutrient uptake. Sufficient conditions based on biologically meaningful parameters in the model are given that predict competitive exclusion for certain parameter ranges and coexistence for others. We prove that the global asymptotic attractivity of steady states of the model is similar to that of the corresponding model without time delays. However, our results indicate that when the inherent delays are in fact large, ignoring them may result in incorrect predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competition in the Chemostat: A Distributed Delay Model and Its Global Asymptotic Behavior

In this paper, we propose a two species competition model in a chemostat that uses a distributed delay to model the lag in the process of nutrient conversion and study the global asymptotic behavior of the model. The model includes a washout factor over the time delay involved in the nutrient conversion, and hence the delay is distributed over the species concentrations as well as over the nutr...

متن کامل

Exploitative competition in the chemostat for two perfectly substitutable resources.

After formulating a general model involving two populations of microorganisms competing for two nonreproducing, growth-limiting resources in a chemostat, we focus on perfectly substitutable resources. León and Tumpson considered a model of perfectly substitutable resources in which the amount of each resource consumed is assumed to be independent of the concentration of the other resource. We e...

متن کامل

Global Asymptotic Behavior of a Chemostat Model with Discrete Delays

This paper studies the global asymptotic behavior of an exploitative competition model between n species in a chemostat. The model incorporates discrete time delays to describe the delay in the conversion of nutrient consumed to viable biomass and hence includes delays simultaneously in variables of nutrient and species concentrations. In the case where only two species are engaged in competiti...

متن کامل

Global Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays

In this paper‎, ‎a bidirectional ring network with three cells and different time delays is presented‎. ‎To propose this model which is a good extension of three-unit neural networks‎, ‎coupled cell network theory and neural network theory are applied‎. ‎In this model‎, ‎every cell has self-connections without delay but different time delays are assumed in other connections‎. ‎A suitable Lyapun...

متن کامل

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2000